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Motivation

• Laser	spectroscopy	produced	vast	amounts	of	
data

• Need	for	automatization of	classification	and	
discrimination	of	spectra

• Classification	techniques	are	ad-hoc	and	do	
not	have	theoretical	justification

• No	assurance	of	optimality	from	statistical	
theory	of	detection	point	of	view



Examples	of	Spectroscopy	Data



Goal

• Develop	optimal	classifier	for	spectroscopy	
data

• Consider	echelle spectrograph	with	an	
Intensified	Charge	Coupled		Device	(ICCD)	
sensors	

• Verify	model	assumptions	using	experimental	
data



Laser	Induced	Breakdown	Spectroscopy	
(LIBS)	System
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Effects	of	Spectral	Line	Widening



Optimal	Classifier	of	Spectroscopy	Data

• Detection	of	Gaussian	signal	in	Gaussian	noise!

• Likelihood	ratio	test

• Log-likelihood	 test—quadratic	decision	boundary
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Experimental	Results
• Andor Mechelle ME5000	spectrograph	with	an	ICCD	camera	
(iStar,	Andor Technology,		DH734-18F	03)

• The	total	number	of	channels:	26,040.	
• Wavelength	range:	199.04—974.83nm.		
• The	spectrometer	used	orders	m=21-100.		
• The	grating	with	52.13	line/mm;	grating	constant	d»5-30μm,	
blazed	at	32.35	degrees.	

• Plasma	excited	with	a	broadband	CPA-Series	Ti-Sapphire	ultra-
short	laser	(Clark-MXR,	Inc,	Model:	2210)	generating	150	fs long	
pulses	operating	at	775nm

• Experiments	performed	with:
– “Dark	signal”
– NIST	standardized	glass	



Hypotheses	Tested

• H01:	sout(λk)	follows	Gaussian	distribution,	
λk∈[200.33nm,	909.45nm] (for	dark	signal	and	
NIST	glass)
– Tested	using	Kolmogorov-Smirnov,	Lilliefors tests	
and	by	inspection	of	skewness and	kurtosis	

• H02:sout(λi),	sout(λj)	are	uncorrelated	when	λi≠λj
(for	dark	signal)
– Tested	by	inspection	of	estimated	normalized	
autocorrelation



Histogram	of	Skewness of	“Dark	Signal”



Histogram	of	Kurtosis		of	“Dark	Signal”



Autocorrelation	of	“Dark	Signal”



Kolmogorov-Smirnov	Test	for	Gaussianity
of	NIST	Glass	Spectrum	(α=0.05)



Lilliefors Test	for	Gaussianity of	NIST	
Glass	Spectrum	(α=0.05)



Lilliefors Test	for	Gaussianity of	NIST	
Glass	Spectrum	(α=0.005)



Discussion	and	Conclusions
• “Dark	signal”:
– Gaussian	for	almost	all	wavelengths	
– Observably	correlated	only	with	the	samples	at	adjacent	
wavelengths	

• NIST	glass	signals	sout(λk)	approximately	Gaussian	for	a	
large	range	of	λk∈[400nm,	700nm]

• Optimal	classifier	for	spectroscopy	data	has	quadratic	
decision	boundary

• Optimal	classifier	is	applicable	if:
– The	number	of	samples	is	sufficiently	large
– Feature	selection	to	determine	discriminatory	
wavelengths	is	applied	



Examples:	Discrimination	of	Protein	
Classes	using	Selected	Features



Examples:	Discrimination	of	Protein	
Classes	using	Selected	Features



Examples:	Discrimination	of	Protein	
Classes	using	Selected	Features
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